
Secure Environments for
Developers and Their Agents

Accelerating Innovation Through Governed,
Scalable, and Ephemeral Workspaces

October 2025Paul Nashawaty
Principal Analyst | theCUBE Research

© 2025 by theCUBE Research, a SiliconeANGLE Media company. All Rights Reserved.

Executive Summary

Application developers are facing a growing pressure
to deliver more and deliver faster, without sacrificing
security or driving up costs. CIOs and CTOs now have
strategic imperatives to reduce infrastructure waste
by putting compute resources closer to the point of
need, accelerating build and test cycles, and responsibly
deploying AI-powered coding tools. In fact, 34% of
developers cite an over-focus on compliance as a
significant barrier to DevSecOps maturity (AppDev
Done Right Summit, Day 2, “Cultural Barriers to
Observability and DevSecOps Maturity”). Navigating
increased complexity, developer sprawl, and AI-driven
transformation now requires
these priorities.

Many organizations continue to function in a reactive
manner despite the increasing urgency to modernize.
The costs of this approach show up in multiple ways:
protracted onboarding cycles that can take days or
even weeks, inconsistent toolchains that force
developers to relearn workflows across projects, and
persistent environment drift that causes code to
behave differently between local machines and
production. These inefficiencies not only slow delivery
but also undermine trust between development and
operations teams.

Teams throughout the industry are looking for solutions
that can build scalable, reproducible, and secure
development environments that can run AI coding
agents in addition to conventional toolchains. These
strategies are assisting companies in reducing release
cycles, enhancing quality, and optimizing developer time
by facilitating quicker iteration, more robust governance,
and cost alignment.

© 2025 by theCUBE Research, a SiliconeANGLE Media company. All Rights Reserved.

Build and Test Faster

Although speed is hindered by hidden friction
points, it is still a crucial metric in the delivery of
modern applications. Due to complex toolchain setup,
development teams typically encounter delays during
onboarding, spend valuable time resolving dependency
conflicts that disrupt builds and tests, and find it difficult
to replicate production-like environments for validation.
The cumulative impact of creating an environment slowly
or inconsistently that compounds over time is referred
to by many engineering leaders as “setup debt.”

Setup debt has a measurable cost. According to
theCUBE Research, only 55.3% of organizations report
complete environment consistency across stage, test,
and production, while the rest acknowledge at least
some level of inconsistency (AppDev Done Right Summit,
Day 1, Release “Environment Consistency”). This gap
fuels drift between developer machines and production
systems, undermining confidence in test results and
delaying deployments. Similarly, some teams still rely
on manual processes (41.1%) and predefined templates
(39.7%) for ensuring configuration consistency, signaling
that automation and infrastructure-as-code are not yet
universal (AppDev Done Right Summit, Day 1, Release
“Ensuring Configuration Consistency”).

To overcome these obstacles, businesses are embracing
standardized, cloud-based development environments
more and more. These environments can be reliably
replicated across teams and provisioned quickly.
Infrastructure-as-code templates are used by many
organizations to guarantee reproducibility and minimize
the amount of manual labor required to set up test
environments. Workflows for deployment are streamlined
by integrated CI/CD pipelines, and AI-assisted
prototyping is showing promise as a tool for speeding up
early-stage ideation, especially in low-risk, experimental
stages where speed is more important than production
readiness.

These processes assist teams in transitioning from
reactive maintenance to proactive innovation by
decreasing the amount of time and complexity
required to set up an environment. The result is
faster experimentation, shorter release cycles, and a
measurable increase in the proportion of developer time
spent on building new value rather than maintaining
existing systems.

Key Takeaway: Development teams can improve
quality, speed up delivery, and devote more
time to innovation by lowering setup debt
through automated, reproducible, and
standardized environments.

© 2025 by theCUBE Research, a SiliconeANGLE Media company. All Rights Reserved.

Deploy Coding Agents
at Scale and Govern AI
Integration

AI-powered tools (e.g., code generation, automated
bug detection, and intelligent refactoring) have
transcended novelty and become commonplace in
developer workflows. 73% of developers report that
AI has simplified operations and freed up resources
(AppDev Done Right Summit, Day 2, “AIOps Operational
Impact in Observability Practice”). By eliminating
repetitive work, simplifying debugging, and facilitating
faster iteration, these tools can significantly speed up
delivery. However, organizations cannot overlook the
additional layers of governance, compliance, and risk
management brought about by their increasing use.
Important questions surface: How can the security and
quality of code generated by AI be audited? Which rules
ought to govern an agent’s access to private information
or sensitive systems? How can businesses promote
experimentation without running the risk of breaking
rules or breaking the law?

To address these concerns, leading organizations
are embedding governance into the development

environment itself. Workspace-level policy enforcement
ensures that security and compliance rules are
automatically applied whenever an AI coding tool is
used. Isolated, auditable sandbox environments are
increasingly launched for AI experimentation, allowing
developers to test capabilities without exposing
production systems. To guarantee that each has the
appropriate degree of access and tooling, role-based
or persona-based access models are aiding in the
differentiation of professional developers, citizen
developers, and AI-assisted workflows. In order to
ensure quality and compliance, many teams also divide
up AI tools so that untested code cannot go straight into
production without human review.

These approaches are allowing organizations to capture
the productivity gains of AI acceleration while keeping
oversight, security, and compliance intact. By balancing
the freedom to experiment with the guardrails to protect
systems and data, enterprises can integrate AI coding
agents at scale without sacrificing control.

Key takeaway: Organizations can confidently scale
AI adoption by integrating governance directly into
AI development workflows, optimizing its benefits
while preserving quality, security, and compliance.

© 2025 by theCUBE Research, a SiliconeANGLE Media company. All Rights Reserved.

Reduce Cost and
Bring Code Closer to
Resources

For years, development infrastructure has been prone to
overbuilding and underutilization. Oversized developer
hardware, always-on virtual machines, and idle cloud
environments all drain funds with little return. In addition
to increased operating expenses, the outcome includes
wasted computational resources and preventable
environmental damage.

Compounding the issue, developers often work far from
the systems their code depends on. When build and test
environments are physically or logically distant from the
associated data and services, latency increases, build
times slow, and performance bottlenecks emerge. All
of these elements work together to reduce developer
productivity and raise infrastructure costs.

Organizations are implementing an array of new best
practices to address these inefficiencies. In order
to minimize wasted compute cycles, on-demand

provisioning makes sure that development environments
are only launched when necessary and automatically
terminate when not in use. The expenses of static
over-allocation are avoided by automatically scaling
resources in response to active developer activity,
which matches infrastructure consumption with current
demand. Build times can be expedited and latency
decreased with proximity deployment, which places
environments closer to the data, services, or even edge
locations they interact with. In parallel, teams are able to
maintain performance without overspending on high-
spec hardware due to lightweight developer devices that
transfer computationally demanding tasks to scalable
cloud or on-premises infrastructure.

By aligning infrastructure use with actual demand
and strategically placing environments near their
dependencies, organizations can reduce waste, improve
developer satisfaction, and lower the total cost of
ownership.

Key takeaway: Matching infrastructure
consumption to real-time developer activity
and placing resources closer to where code runs
enables cost savings, higher performance, and
greater operational efficiency.

© 2025 by theCUBE Research, a SiliconeANGLE Media company. All Rights Reserved.

Coder’s Response to
Industry Needs
The challenges of modern application delivery require
a unified approach that integrates speed, security, and
cost optimization. Coder brings these priorities together
in a single, flexible platform designed for secure, scalable,
and high-performance development. Its architecture
ensures that enterprise teams can meet increasing
demands without sacrificing efficiency or oversight by
reducing the gap between infrastructure governance
and developer experience.

Coder enables the rapid provisioning of ephemeral,
isolated workspaces (whether containers, virtual
machines, bare metal, or hybrid infrastructure) that
are ready in seconds with pre-configured toolchains,
dependencies, and access controls. These workspaces
provide reproducible, production-like environments
from the outset, reducing the setup debt that often
slows development cycles. By supporting on-demand
computing and auto-scaling, Coder also helps
eliminate idle resource waste and aligns infrastructure
consumption with actual developer and data science
activity, strengthening both efficiency and cost control.

Coder also unifies team environments, providing
consistent experiences throughout testing, production,
and development. This standardization reduces
environment drift, strengthens testing reliability, and
ensures that distributed or hybrid teams can work with
the same level of confidence as if they were co-located.
Declarative automation further strengthens consistency
by defining infrastructure with Terraform and developer
environments with Docker or similar tools. This approach
ensures version-controlled, reusable configurations that
are reproducible across projects and teams.

Coder supports remote development with true IDE
flexibility, combining low-latency performance with a
range of workflow options. Developers can integrate
seamlessly with local environments such as VS Code and
JetBrains, preserving the familiarity of their preferred
tools. At the same time, Coder enables browser-based
IDEs for fully remote or agent-driven workflows, offering
a lightweight alternative that requires no local setup.
This versatility ensures teams can choose the right
development experience for each project, whether they
prioritize local performance, remote collaboration, or
cloud-native scalability.

Additionally, release cycles can be accelerated and
human error reduced through integrated CI/CD support,
which automates testing, validation, and deployment
with minimal manual configuration. By embedding
pipelines directly into the development workflow, teams
can catch issues earlier, enforce consistent quality
standards, and push updates to production more reliably.
This not only shortens feedback loops but also frees
developers from repetitive setup tasks, allowing them to
focus on building features rather than managing release
mechanics.

By combining these features, Coder operationalizes
industry best practices by offering the efficiency
of consumption-based infrastructure, the speed of
standardized environments, and the governance required
for the integration of AI tools. The end product is a
platform that not only addresses current issues but also
puts teams in a position to quickly adjust as workflows
and technology change.

© 2025 by theCUBE Research, a SiliconeANGLE Media company. All Rights Reserved.

Analyst Conclusion

Enterprise development teams are entering a turning
point: the convergence of AI adoption, distributed
collaboration, and continuous delivery pressures is
forcing a change in how environments are built and
governed. Those who fail to adapt risk being locked into
brittle, high-cost workflows that drain developer time,
weaken security posture, and erode competitiveness.

Coder demonstrates how ephemeral, governed, and
performance-tuned environments can move beyond
incremental efficiency gains to become a strategic
enabler of innovation. What’s emerging is not just
faster setup or reduced waste, but the rise of
environment-as-a-service as a standard practice,
where reproducibility, compliance, and cost alignment
are no longer optional add-ons but table stakes for
modern development.

For CIOs, CTOs, and platform engineering leaders, the
strategic imperative is clear: embed governance and
compliance directly into AI and developer pipelines as
first-class design principles. Organizations that embrace
this model will accelerate delivery without sacrificing
trust or control, while laggards risk facing mounting
compliance failures, stalled AI initiatives, and developer
attrition in a highly competitive talent market.

Looking forward, emerging standards such as governed
workspaces, environment-as-code, and AI-aware
compliance checks are poised to define the next era of
secure application development. In the era of AI-driven
pipelines, platforms like Coder position businesses to
compete at the intersection of speed, safety, and scale,
transforming environment management from a hidden
tax into a differentiator for innovation.

Disclaimer

All trademark names are the property of their respective

companies. Information contained in this publication has

been obtained by sources theCUBE Research, a SiliconANGLE

Media company, considers to be reliable but is not warranted

by theCUBE Research. The publication may contain opinions

of theCUBE Research, which are subject to change. This

publication is copyrights by theCUBE Research, a

SiliconANGLE Media company.

Contact
Silicon Valley
989 Commercial Street
Palo Alto, CA 94303

Boston Metro
95 Mount Royal Avenue
Marlborough, MA 01752

David Butler
david.butler@siliconangle.com
774-463-3400

